Sulfide Solid Electrolyte with Favorable Mechanical Property for All-Solid-State Lithium Battery

نویسندگان

  • Atsushi Sakuda
  • Akitoshi Hayashi
  • Masahiro Tatsumisago
چکیده

All-solid-state secondary batteries that employ inorganic solid electrolytes are desirable because they are potentially safer than conventional batteries. The ionic conductivities of solid electrolytes are currently attracting great attention. In addition to the conductivity, the mechanical properties of solid electrolytes are important for improving the energy density and cycle performance. However, the mechanical properties of sulfide electrolytes have not been clarified in detail. Here, we demonstrate the unique mechanical properties of sulfide electrolytes. Sulfide electrolytes show room temperature pressure sintering. Ionic materials with low bond energies and a highly covalent character, which is promising for achieving a high ionic conductivity, tend to be suitable for room-temperature processing. The Young's moduli of sulfide electrolytes were measured to be about 20 GPa, which is an intermediate value between those of typical oxides and organic polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High Reversibility of “Soft” Electrode Materials in All-Solid-State Batteries

All-solid-state batteries using inorganic solid electrolytes (SEs) are considered to be ideal batteries for electric vehicles and plug-in hybrid electric vehicles because they are potentially safer than conventional lithium-ion batteries (LIBs). In addition, all-solid-state batteries are expected to have long battery life owing to the inhibition of chemical side reactions because only lithium i...

متن کامل

Development of Sulfide Solid Electrolytes and Interface Formation Processes for Bulk-Type All-Solid-State Li and Na Batteries

All-solid-state batteries with inorganic solid electrolytes (SEs) are recognized as an ultimate goal of rechargeable batteries because of their high safety, versatile geometry, and good cycle life. Compared with thin-film batteries, increasing the reversible capacity of bulk-type all-solid-state batteries using electrode active material particles is difficult because contact areas at solid–soli...

متن کامل

High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life.

High energy and power densities are the greatest challenge for all-solid-state lithium batteries due to the poor interfacial compatibility between electrodes and electrolytes as well as low lithium ion transfer kinetics in solid materials. Intimate contact at the cathode-solid electrolyte interface and high ionic conductivity of solid electrolyte are crucial to realizing high-performance all-so...

متن کامل

High-Performance All-Solid-State Lithium-Sulfur Battery Enabled by a Mixed-Conductive Li2S Nanocomposite.

All-solid-state lithium-sulfur batteries (ASSLSBs) using highly conductive sulfide-based solid electrolytes suffer from low sulfur utilization, poor cycle life, and low rate performance due to the huge volume change of the electrode and the poor electronic and ionic conductivities of S and Li2S. The most promising approach to mitigate these challenges lies in the fabrication of a sulfur nanocom...

متن کامل

Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes

DOI: 10.1002/aenm.201501590 electrochemical stability window, and (3) chemical compatibility with the anode and cathode. In the past few years, major advances have been achieved in increasing the Li ionic conductivity of the solid electrolytes. The state-of-the-art solid electrolyte materials, such as Li-garnet Li7La3Zr2O12 (LLZO) and Li10GeP2S12 (LGPS) have achieved an ionic conductivity of 10...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013